Abdul Basit, Junquan Liu, Kashif Rahim, Wei Jiang & Huiqiang Lou. Thermophilic xylanases: from bench to bottle. Critical Reviews in Biotechnology. DOI: 10.1080/07388551.2018.1425662
发布日期:2019-11-12 浏览次数:  信息来源:彩票游戏秒速飞艇学院

Thermophilic xylanases: from bench to bottle

Abdul Basit, Junquan Liu, Kashif Rahim, Wei Jiang & Huiqiang Lou


Critical Reviews in Biotechnology

DOI: 10.1080/07388551.2018.1425662



Lignocellulosic biomass is a valuable raw material. As technology has evolved, industrial interest in new ways to take advantage of this raw material has grown. Biomass is treated with different microbial cells or enzymes under ideal industrial conditions to produce the desired products. Xylanases are the key enzymes that degrade the xylosidic linkages in the xylan backbone of the biomass, and commercial enzymes are categorized into different glycoside hydrolase families. Thermophilic microorganisms are excellent sources of industrially relevant thermostable enzymes that can withstand the harsh conditions of industrial processing. Thermostable xylanases display high-specific activity at elevated temperatures and distinguish themselves in biochemical properties, structures, and modes of action from their mesophilic counterparts. Natural xylanases can be further improved through genetic engineering. Rapid progress with genome editing, writing, and synthetic biological techniques have provided unlimited potential to produce thermophilic xylanases in their natural hosts or cell factories including bacteria, yeasts, and filamentous fungi. This review will discuss the biotechnological potential of xylanases from thermophilic microorganisms and the ways they are being optimized and produced for various industrial applications.


【打印本页】 【关闭本页】